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1 Introduction

Supersymmetric solutions that preserve the same supersymmetries as three-charge black

holes or black rings in five dimensions are well understood and can be written in terms of

three self-dual two-forms describing magnetic fluxes on a hyper-Kähler four-dimensional

base, three warp factors, sourced either by the two-forms or by singular sources, and

an angular momentum one-form [1]. These solutions to M-theory, or type II string the-

ory, can be recast in terms of BPS solutions of five-dimensional U(1)3 ungauged su-

pergravity and can also be easily generalized to U(1)N supergravities [2]. If the four-

dimensional hyper-Kähler base space is Gibbons-Hawking (or Taub-NUT), the two-forms,

the warp factors and the angular momentum can be determined entirely in terms of eight

(2N + 2) harmonic functions [3–5], and descend to four-dimensional BPS multi-centered

black hole configurations [6].

Implicit in the construction of the supersymmetric solutions is the choice of an orien-

tation for the hyper-Kähler four-dimensional base: The curvature tensor can be arranged

to be either self-dual or anti-self dual. For supersymmetry it is crucial that the Riemann
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curvature of this base has the same duality as the three magnetic two-forms: They must all

be self-dual or anti-self-dual. The difference in choice merely amounts to an overall reversal

of orientation and is usually neglected. However, there has been a very nice recent obser-

vation [7] that one can obtain extremal non-supersymmetric solutions of the supergravity

equations of motion by flipping the relative dualities of the hyper-Kähler base and the mag-

netic two-forms.1 This means that supersymmetries are “locally preserved” by the sources

but globally broken by the incompatible holonomy of the background metric on the base.

A simple example of this, and a very useful tool in our analysis, is to start by noting

that there are two ways of writing the flat metric on R
4 in Gibbons-Hawking (GH) form:

One that looks self-dual and one that looks anti-self-dual. While this distinction is a

coordinate artifact for R
4 (because the curvature is trivial), one of the choices will break

supersymmetry in more general backgrounds. Indeed, it is fairly straightforward to adapt

what appears as an orientation reversal in R
4 to a highly non-trivial, supersymmetry-

breaking transformation in Taub-NUT. Thus, given an asymptotically R
4 solution, one

can find two ways of extending it to an asymptotically Taub-NUT solution: one that

preserves the supersymmetry and one that does not.

The basic technique is also easily understood in terms of the underlying brane con-

struction. For example, an asymptotically five-dimensional black ring solution (with a flat

R
4 base) preserves the four supersymmetries respected by its three constituent electric M2

branes. When one replaces the R
4 base by a Taub-NUT space and considers the solution

from the IIA perspective, the M2 branes descend to D2 branes while the tip of Taub-NUT

descends to a D6 brane. In the BPS embedding, the four Killing spinors preserved by the

three sets of D2 branes are the same as those of the D6 brane, and thus the solution is

supersymmetric. In the non-BPS embedding the D6 brane has opposite orientation, and

hence it does not preserve any of the four Killing spinors of the D2 branes.

An interesting corollary of this D-brane picture is that five-dimensional objects that

preserve the same eight Killing spinors as two sets of M2 branes, will still be supersymmet-

ric when embedded in self-dual or anti-self-dual Taub-NUT. Indeed, if only two sets of D2

branes are present, the D6 brane will be mutually BPS with them irrespective of its orien-

tation. Hence, a two-charge supertube embedded in Taub-NUT in the “duality-matched”

embedding [8] or in the “duality-flipped” embedding [7] will still be supersymmetric. We

will see in section 4 the rather unexpected fashion in which this is realized.

Our purpose in this paper is to give a general algorithm for constructing the most

general two-center solution of the “almost BPS equations” presented in [7]. The most

obvious solution to look for is a “non-BPS” two-charge supertube in Taub-NUT. However,

as we explained above, this solution turns out to be identical to that of the BPS supertube

in Taub-NUT. The next obvious solution is the non-BPS three-charge three-dipole charge

black ring in Taub-NUT, which we construct in section 3.

Because the new non-BPS black-ring solution becomes identical to the BPS solution

both in R
4, and in R

3 × S1, it is possible to recycle many of the pieces of the BPS three-

1We will consistently fix our hyper-Kähler base to be self-dual (i.e. with self-dual curvature) and so this

new prescription amounts to starting with anti-self-dual magnetic two-forms and solving the supersymmetric

BPS equations with flipped dualities.
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charge three-dipole charge black ring solutions in R
3 × S1 and R

4 [1, 4, 9–11], and the

only new ingredient is to solve one non-trivial equation for a piece of the rotation vector.

The full solution is again generated from several harmonic functions, determining the M2

charges, M5 dipole charges and angular momentum of the black ring. However, these

harmonic functions enter the solution very differently than for BPS black rings in Taub-

NUT [5, 12, 13]. Furthermore, in order for the solution to be free of closed timelike curves

(CTC’s), the harmonic function that determines the angular momentum must have both a

1/r source at the tip of Taub-NUT, as well as a “dipole” piece of the form cos θ/r2 centered

at the black ring location. No such terms appear in the BPS ring solution, and the necessity

of their presence is far from obvious without a careful construction of the full solution.

Since these new solutions “locally preserve” supersymmetry but break it globally, one

expects that local properties should be the same as those of the BPS counterparts. Indeed,

we find that the near-horizon geometry of the non-BPS extremal ring is identical to that

of its BPS cousin, and its entropy is given by the E7(7) quartic invariant as a function of

its charges [14]. On the other hand, the location, or “radius” of the ring in Taub-NUT is a

more global property and is generically different for BPS and non-BPS solutions. For both

BPS and non-BPS solutions the location is determined by the requirement that there be

no Dirac-Misner strings, but the source terms that can give rise to such strings are very

different for BPS and non-BPS solutions. We also show, in section 4, that when black rings

are reduced to two-charge supertubes, the BPS and non-BPS solutions coincide, and the

two radii become equal.

As observed in [7], the almost BPS equations can be used to re-derive the non-rotating

extremal non-BPS four-dimensional single-center black hole obtained in [15, 16]. How-

ever their power is much greater, even for single-center solutions: by adding to the an-

gular momentum harmonic function a “dipole” piece of the form cos θ/r2 centered at

the black hole location, we can give this black hole rotation. The resulting solution is

a new rotating extremal non-BPS solution in four dimensions. This solution has five (four-

dimensional) quantized charges (corresponding to D6, D0 and three sets of D2 branes) as

well as angular momentum.2

For particular values of the charges and moduli one can show that this black hole can

be related by dualities to the “slowly-rotating” or “ergo-free” extremal limit3 of the D6-D0

(Rasheed-Larsen) black hole [19] or its D6-D2-D2-D0 dual [20]. However, our solution is

much more general, as it can have arbitrary D6-D2-D2-D2-D0 charges. Hence this solution

is the seed solution for the most generic extremal under-rotating black hole of the STU

model and of N = 8 supergravity in four dimensions.

Using our method it also is quite straightforward to find a solution that contains both

this generic rotating black hole and a black ring. The presence of the black hole adds

an extra source term to the black ring warp factor, and three more terms to the angular

momentum vector. It also modifies the black ring radius relation, without changing the

near-horizon geometry of either the ring or the hole.

2It is also trivial to introduce Wilson lines for the magnetic gauge fields, because they do not affect the

rest of the solution in any way (unlike for BPS solutions).
3See, for example, [17] or [18] for a discussion of the two extremal limits of this black hole.
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The non-BPS black ring with a black hole in the middle can be compactified to four

dimensions, to give a two-center non-BPS solution, with a non-trivial angular momentum.

The black hole at one of the centers has five charges (D6-D2-D2-D2-D0), and the black

hole at the other center has seven charges (D4-D4-D4-D2-D2-D2-D0). Since we find the

solution for arbitrary moduli, this system can be dualized into one where each of the two

black holes has D6-D4-D2-D0 charges and can probably be identified to the most generic

extremal two-centered solution of the STU model.

Before beginning, it is important to note that there exists a rather large body of work

on constructing extremal black holes in four-dimensional supergravity, that started from

the observation of [21] that the second-order equations underlying these solutions can be

factorized as products of easier-to-solve first-order equations.4 So far, the single-center

solutions obtained in this way appear to be captured in the ansatz in [7]. On the other

hand there exists a rather complementary body of work on embedding non-extremal five-

dimensional solutions in Taub-NUT, that began with [25, 26] and resulted in the recent

construction of non-extremal black rings in Taub-NUT [27]. It would be interesting to

see if one can construct our extremal non-BPS ring using either of these approaches, and

whether, upon extending these approaches to construct our solution, one could access to a

larger set of solutions than those contained in the ansatz of [7].

In section 2 we review the ansatz of [7] for finding non-BPS solutions. In section 3

we outline our solution-finding technique by constructing a three-charge three-dipole non-

BPS black ring in Taub-NUT. We also analyze its charges, mass and near-horizon limit. In

section 4 we construct a non-BPS supertube in Taub-NUT, and show that this is identical

to a BPS supertube. In section 5 we construct a five-charge rotating black hole, which is

the seed solution for the most general extremal non-BPS under-rotating black hole in four

dimensions. We also discuss its relation to the Rasheed-Larsen solution. In section 6 we

construct a solution that includes both a rotating black hole at the tip of Taub NUT and

a black ring; this solution descends to a two-centered non-BPS black hole solution in four

dimensions. We conclude in section 7.

2 “Almost BPS” solutions

BPS solutions of eleven-dimensional supergravity carrying M2 and M5 charges are

of the form

ds2 = −(Z1Z2Z3)
−2/3(dt+ k)2 + (Z1Z2Z3)

1/3ds24

+

(

Z2Z3

Z2
1

)1/3

(dx2
1 + dx2

2) +

(

Z1Z3

Z2
2

)1/3

(dx2
3 + dx2

4) +

(

Z1Z2

Z2
3

)1/3

(dx2
5 + dx2

6)

(2.1)

C(3) =

(

a1 −
dt + k

Z1

)

∧dx1∧dx2+

(

a2 −
dt+ k

Z2

)

∧dx3∧dx4+

(

a3 −
dt+ k

Z3

)

∧dx5∧dx6 ,

(2.2)

4See, for example, [15, 16, 22–24].
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where ds24 is a hyper-Kähler four-dimensional metric. Defining the “dipole” field

strengths as

ΘI = daI , I = 1, 2, 3 , (2.3)

the equations following from supersymmetry for a self-dual hyper-Kähler base metric are:5

ΘI = ∗4ΘI , (2.4)

d ∗4 dZI =
|ǫIJK |

2
ΘJ ∧ ΘK , (2.5)

dk + ∗4dk = ZIΘI , (2.6)

where ∗4 is the Hodge duality operation performed with the metric ds24. The foregoing

equations also govern the solutions of arbitrary U(1)N ungauged supergravities in five di-

mensions [2] if one replaces the |ǫIJK | by the corresponding triple intersection numberCIJK .

It was observed in [7] that a class of extremal solutions of the equations of motion is

obtained by reversing the duality of the ΘI and of k relative to the duality of the curvature

of the four-dimensional base. That is, one preserves the metric, ds24, and the duality of its

Riemann tensor but flips ∗4 → −∗4 in (2.4)–(2.6):

ΘI = − ∗4 ΘI (2.7)

d ∗4 dZI =
CIJK

2
ΘJ ∧ ΘK (2.8)

dk − ∗4dk = ZIΘI . (2.9)

When the base metric ds24 is flat R
4, the flip of orientation can be re-written as a change

of coordinates, and solutions to equations (2.7)–(2.9) are still BPS. When ds24 is not flat,

as in Taub-NUT space, equations (2.7)–(2.9) define, in general, non-BPS solutions, which

were named “almost BPS” in [7].

2.1 Gibbons-Hawking base

As with the BPS solutions, equations (2.7)–(2.9) are easier to solve if one specializes to

Gibbons-Hawking base metrics:

ds24 = V −1(dψ + ~A)2 + V ds23 , ∗3d ~A = dV . (2.10)

We will also only look for solutions that are invariant under ψ-translations.

The four-dimensional geometry is encoded in the function V , which is harmonic with

respect to the flat three-dimensional euclidean metric ds23. The Hodge star operation in R
3

is denoted by ∗3 and one-forms on R
3 are denoted by a vector superscript. In general, for

a GH base one can take ∗3d ~A = ±dV and this leads to self-dual or anti-self-dual Riemann

tensors. The choice in (2.10) means we are choosing a self-dual curvature.

The one-form potentials for the anti-self dual field strengths have the form:

aI = KI(dψ + ~A) + ~aI , ∗3d~aI = V dKI −KIdV , (2.11)

5If one uses a hyper-Kähler base with an anti-self-dual curvature then the dualities in (2.4)–(2.6) are

flipped to the form (2.7)–(2.9).
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where KI is a harmonic function on R
3. Such aI ’s thus provide the general solution

to eq. (2.7).

Using this result in eq. (2.8), one finds that the warp factors ZI must satisfy

d ∗3 dZI =
1

2
CIJK V d ∗3 d(KJKK) . (2.12)

Unlike the BPS solution, this equation does not, in general, admit a closed form solution

written solely in terms of the functions V and KI . However, in practice, it is still relatively

straightforward to obtain exact solutions for ZI .

Expanding k along the fiber and base of the Gibbons-Hawking space:

k = µ(dψ + ~A) + ~ω , (2.13)

one can reduce (2.9) to:

d(V µ) + ∗3 d~ω = V ZIdKI . (2.14)

Acting with d∗3 one obtains the following equation for µ:

d ∗3 d(V µ) = d(V ZI) ∗3 ∧ dKI . (2.15)

This equation is the integrability condition for (2.14). Again, one does not seem to be able

to find a simple, general solution to this equation, but we will obtain particular solutions

in later sections.

3 Non-BPS extremal black ring

In this section we derive one of the main results of this paper: an exact solution representing

a non-BPS extremal regular black ring in Taub-NUT space. This space is described by the

Gibbons-Hawking potential

V = h +
Q6

r
⇒ ~A = Q6 cos θdφ . (3.1)

We have introduced a generic constant h in V to facilitate comparison with the flat space

(R4) limit, which corresponds to taking h = 0. Taking Q6 = 0 corresponds to the infinite

radius limit of the black ring, in which the base reduces to R
3 ×S1. In both of these limits

the non-BPS solution must reduce to the known BPS black ring solution.

3.1 Solving the equations

We take the position of the black ring in R
3 to be along the positive z axis at a distance

R from the origin of Taub-NUT. We denote polar coordinates centered at the black ring

position by (Σ, θΣ). Their relation to the polar coordinates (r, θ) centered at the origin is:

Σ =
√

r2 +R2 − 2rR cos θ , cos θΣ =
r cos θ −R

Σ
. (3.2)

– 6 –
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The black ring carries dipole charges associated with the harmonic functions6

KI =
dI
Σ
, I = 1, 2, 3 . (3.3)

According to eq. (2.11), the corresponding dipole gauge fields are given by:

aI =
dI
Σ

(dψ + ~A) + ~aI , ~aI = hdI
r cos θ −R

Σ
dφ+Q6dI

r −R cos θ

RΣ
dφ . (3.4)

The warp factors ZI are determined by the equation:

d ∗3 dZI =
CIJK

2
V d ∗3 d(KJKK) =

CIJK
2

(

h+
Q6

r

)

d ∗3 d

(

dJdK
Σ2

)

. (3.5)

The solution ZI can be written as the linear combination of two terms. The first term

satisfies the equation:

d ∗3 dZ
(1)
I =

CIJK
2

hd ∗3 d

(

dJdK
Σ2

)

, (3.6)

which is trivially solved by:

Z
(1)
I =

CIJK
2

h
dJdK
Σ2

. (3.7)

The second term is found by solving

d ∗3 dZ
(2)
I =

CIJK
2

Q6

r
d ∗3 d

(

dJdK
Σ2

)

. (3.8)

This is the same equation as the one in a flat R
4 base and BPS and “almost BPS” solutions

are related by simple change of coordinates (essentially, the exchange of the coordinates

ψ and φ). One can therefore borrow the known BPS solution and see that the equation

above is solved by:

Z
(2)
I =

CIJK
2

Q6 dJdK
R2

r

Σ2
. (3.9)

Moreover we can add to ZI a harmonic function LI , which has a pole at the location

of the ring:

LI = lI +
QI
Σ
. (3.10)

It is not much more difficult to add a pole in LI at the center of the TN space, which

corresponds to placing a black hole inside the black ring. We will construct this more

general solution in section 6. The total solution for ZI is then

ZI = lI +
QI
Σ

+
CIJK

2

dJdK
Σ2

(

h+
Q6r

R2

)

. (3.11)

The equation for k = µ(dψ + ~A) + ~ω is now:

d(V µ) + ∗3d~ω = V ZIdKI (3.12)

=

[(

h+
Q6

r

)(

lI +
QI

Σ

)

+

(

h2 +
Q2

6

R2
+Q6h

(

1

r
+

r

R2

))

CIJK

2

dJdK

Σ2

]

d

(

dI

Σ

)

,

6As one can see from (2.11), adding a constant κI to KI has the only effect of shifting the dipole potential

aI by the constant one-form kIdψ. Hence a constant in KI is physically irrelevant.
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and we then expand the source term on the right-hand side into simpler component pieces.

It is then straightforward to find a solution for each piece. We list in the following the

solutions for the various terms:

d(V µ1) + ∗3d ~ω1 =

(

h+
Q6

r

)

lId

(

dI
Σ

)

(3.13)

⇒ µ1 =
lIdI
2Σ

, ~ω1 =
h lIdI

2

r cos θ −R

Σ
dφ+

Q6lIdI
2

r −R cos θ

RΣ
dφ .

d(V µ2) + ∗3d ~ω2 = h
QI
Σ
d

(

dI
Σ

)

⇒ µ2 = h
QIdI
2V Σ2

, ~ω2 = 0 . (3.14)

d(V µ3) + ∗3d ~ω3 =
Q6

r

QI
Σ
d

(

dI
Σ

)

. (3.15)

d(V µ4) + ∗3d~ω4 =

(

h2 +
Q2

6

R2

)

CIJK
2

dJdK
Σ2

d

(

dI
Σ

)

. (3.16)

d(V µ5) + ∗3d~ω5 = Q6h

(

1

r
+

r

R2

)

CIJK
2

dJdK
Σ2

d

(

dI
Σ

)

. (3.17)

To find a solution to the third equation it is useful to reinterpret it as the equation for

a one-form k̃ ≡ rV µ3(dψ+ ~A)+ ~ω3 in a flat R
4 base, and use the fact that BPS and almost

BPS solutions are related by a ψ ↔ φ exchange, in flat space. In this way one arrives at

the following solutions

µ3 = Q6QIdI
cos θ

2RV Σ2
, ~ω3 = Q6QIdI

r sin2 θ

2RΣ2
dφ . (3.18)

For the fourth equation one can easily verify that the following expressions

µ
(1)
4 =

(

h2 +
Q2

6

R2

)

CIJK
6

dIdJdK
V Σ3

, ~ω4
(1) = 0 , (3.19)

and

µ
(2)
4 =

(

h2 +
Q2

6

R2

)

CIJK
6

dIdJdK
r cos θ

RV Σ3
, ~ω4

(2) =

(

h2 +
Q2

6

R2

)

CIJK
6

dIdJdK
r2 sin2 θ

RΣ3
dφ.

(3.20)

both solve the equation. Hence we will take

µ4 = µ
(2)
4 + α(µ

(2)
4 − µ

(1)
4 ) , ~ω4 = (1 + α)~ω

(2)
4 , (3.21)

and, for the moment, we will keep the parameter, α, arbitrary.

The fifth equation is the only one whose solution cannot be found by simply recycling

pieces of the black ring solutions in R
4 or R

3 ×S1, because the right hand side vanishes in

both limits (Q6 → 0 or h→ 0). However, it is possible to think about the right hand side

as coming from a fake solution in R
4 whose warp factor is

Zfake ∼ r2 +R2

Σ2
. (3.22)
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One can then express Zfake in the x-y coordinate system used to find the black ring in

R
4 [10], solve the corresponding equations7 for k1 and k2, and express the R

4 solution as a

solution of the almost BPS equations to read off µ5V and ~ω5. This gives

µ5 = Q6h
CIJK

6
dIdJdK

3r2 +R2

2R2V rΣ3
, (3.23)

~ω5 = Q6h
CIJK

6
dIdJdK

r(3R2 + r2) −R(3r2 +R2) cos θ

2R3 Σ3
dφ , (3.24)

which one can also verify directly to be a solution of (3.17).

Finally one has the freedom to add a solution of the homogeneous equation, that is, a

one-form in TN space with self-dual field strength. Such a one-form has the general form

k =
M

V
(dψ + ~A) + ~ω , ∗3d~ω = −dM , (3.25)

with M any harmonic form on R
3. We take M of the form

M = m0 +
m

Σ
+
m̃

r
. (3.26)

We will see that, unlike the BPS solution, a pole in M at r = 0 is necessary to produce a

regular solution. Hence the final possible contributions to µ and ~ω are

µ6 =
m0

V
+

m

V Σ
+

m̃

V r
, ~ω6 = −mr cos θ −R

Σ
dφ− m̃ cos θdφ . (3.27)

We should also note that one should think of the term proportional to α in µ4 and

~ω4 as coming from an extra harmonic term in M. Thus, the harmonic function M that

determines the black ring solution is really

M = m0 +
m

Σ
+
m̃

r
+ α

CIJK
6R

dIdJdK

(

h2 +
Q2

6

R2

)

cos θΣ
Σ2

, (3.28)

where θΣ was defined in (3.2). In section 3.3 we will show that the coefficient of the

dipole term, cos θΣ
Σ2 , is fixed by requiring regularity at the black ring horizon. We will see

in section 5 that an analogous dipole term is also present in the black hole solution: in the

black hole case, this term is not fixed by regularity at the horizon, and in fact is required

for allowing the black hole to rotate.

Adding all the terms together, we arrive at the final answer

µ =
m0

V
+

m

V Σ
+

m̃

V r
+
lIdI
2Σ

+
hQIdI
2V Σ2

+Q6QIdI
cos θ

2RV Σ2

+
CIJK

6
dIdJdK

[(

h2 +
Q2

6

R2

)(

r cos θ

RV Σ3
+ α

r cos θ −R

RV Σ3

)

+Q6h
3r2 +R2

2R2V rΣ3

]

,

~ω =

[

κ−m
r cos θ −R

Σ
− m̃ cos θ +

hlIdI
2

r cos θ −R

Σ
+
Q6lIdI

2

r −R cos θ

RΣ

+Q6QIdI
r sin2 θ

2RΣ2
+

(

h2 +
Q2

6

R2

)

CIJK
6

dIdJdK(1 + α)
r2 sin2 θ

RΣ3

+ Q6h
CIJK

6
dIdJdK

r(3R2 + r2) −R(3r2 +R2) cos θ

2R3 Σ3

]

dφ . (3.29)

We have included a constant term κdφ in ~ω and this will be needed to cancel

Dirac-Misner strings.

7Equations (46) and (47) in [1].
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3.2 Regularity

The angular coordinates ψ and φ both shrink to zero size at the center of Taub-NUT

space, r = 0. Hence regularity of the one-form k requires that µ and ~ω vanish at r = 0 and

imposes the following constraints on the parameters of the solution:

µr=0 = 0 ⇒ m̃

Q6
+
lIdI
2R

+
CIJK

6

hdIdJdK
2R3

= 0 , (3.30)

~ωr=0 = 0 ⇒ κ+m− hlIdI
2

−
(

m̃+
Q6lIdI

2R
+
CIJK

6

Q6hdIdJdK
2R3

)

cos θ = 0 . (3.31)

Moreover the coordinate φ degenerates on the z axis (i.e. for θ = 0 or π): one should thus

require that ~ω vanishes on this axis. The constraint one obtains for θ = π is

~ωθ=π = 0 ⇒ κ+m− hlIdI
2

+

(

m̃+
Q6lIdI

2R
+
CIJK

6

Q6hdIdJdK
2R3

)

= 0 , (3.32)

and is thus already implied by the two previous constraints (3.30) and (3.31). Vanishing

of ~ω at θ = 0 imposes the further condition

~ωθ=0 = 0 ⇒ κ− m̃+ sign(r −R)

(

−m+
hlIdI

2
+
Q6lIdI

2R
+
CIJK

6

Q6hdIdJdK
2R3

)

= 0 .

(3.33)

All the regularity conditions are solved by taking

m =

(

h+
Q6

R

)

lIdI
2

+
CIJK

6

Q6hdIdJdK
2R3

,

m̃ = κ = −Q6

(

lIdI
2R

+
CIJK

6

hdIdJdK
2R3

)

. (3.34)

The parameter m̃ determines the value of µ at the center of Taub-NUT, and the

second equation determines the value of this parameter that gives regular geometries

(much like for BPS solutions). As we will see later, the parameter m gives the D0

charge of the ring, and hence the first equation determines the distance between the two

centers, R, as a function of the charges. This equation is the generalization of the bubble

equations [6, 28–30] to non-BPS black holes, and reduces to these equations in the BPS

limits (h → 0 or Q6 → 0). For BPS solutions this equation is a simple, linear equation

for R, but for the non-BPS solutions this equation is cubic in R, and its structure is much

richer. Since the charges of the black ring are quantized, for given values of the moduli

this equation quantizes the possible values of R.

Note that the foregoing conditions do not depend upon the parameter α that governs

the “dipole” piece, proportional to cos θΣ
Σ2 , in µ. We will see in the next subsection that a

careful analysis of regularity near the horizon fixes α to a non-zero value.

We should note that the authors of [7] conjectured some expressions for the harmonic

functions that underlie the non-BPS black ring solution. The proposed solutions for KI , LI
and M had poles at the black ring location (much like for BPS black rings) but our analysis

here shows that such a solution will always be pathological. Regular solutions must have

a source in M at the center of Taub-NUT, with coefficient m̃ given by (3.34). Similarly,

there must also be very specific, non-zero “dipole” pieces, proportional to α, in µ and ~ω.
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3.3 Near-horizon geometry

We now examine the metric in the vicinity of the horizon, which is located at Σ = 0. We

will work in the coordinates (Σ, θΣ) defined in (3.2). Neglecting the torus directions xi,

the horizon is spanned by the coordinates ψ, φ and θΣ, and its induced metric (in the

eleven-dimensional Einstein frame) is

ds2H =
I4

(Z1Z2Z3)2/3V 2
(dψ + ~A)2 − 2

µωφ

(Z1Z2Z2)2/3
(dψ + ~A)dφ

+(Z1Z2Z3)
1/3

(

V Σ2 sin2 θΣ −
ω2
φ

Z1Z2Z3

)

dφ2 + (Z1Z2Z3)
1/3V Σ2dθ2

Σ , (3.35)

where

I4 = Z1Z2Z3V − µ2V 2 . (3.36)

The volume element of this metric is

√
gH = Σ(I4Σ

2 sin2 θΣ − ω2
φ)

1/2 . (3.37)

For generic values of the parameter α one has

I4 ∼ Σ−5 , ωφ ∼ Σ−1 , (3.38)

and thus
√
gH ∼ Σ−1/2. So for generic α the geometry does not have a regular horizon of

finite area. However the term of order Σ−5 in I4 can be canceled by taking

α = − h2R2

h2R2 +Q2
6

. (3.39)

One can think about α as the coefficient of a harmonic function that determines a momen-

tum one-form whose field strength is self-dual, and hence lies in the kernel of the (1 − ∗)d
operator in equation (2.9). Adding this self-dual piece with the right coefficient is crucial

for the regularity of the solution.

For this value of α, the metric coefficients have the following near-horizon expansions:

I4 =
J4

Σ4
+

(

CIJK
6

d̂I d̂J d̂K

)2 Q2
6

R4 V 4
R Σ4

sin2 θΣ +O

(

1

Σ3

)

(3.40)

ZI =
CIJK

2

d̂J d̂K
VR Σ2

+O

(

1

Σ

)

(3.41)

µ =
CIJK

6

d̂I d̂J d̂K
V 2
R Σ3

+O

(

1

Σ2

)

(3.42)

ωφ =
CIJK

6

Q2
6 d̂I d̂J d̂K
R2 V 2

R Σ
sin2 θΣ +O(Σ0) , (3.43)

where J4 is the usual quartic invariant:

J4(QI , d̂I , m̂) =
1

2

∑

I<J

d̂I d̂J QIQJ − 1

4

∑

I

d̂2
I Q

2
I −

CIJK
3

m̂ d̂I d̂J d̂K . (3.44)
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We have also defined the “effective” dipole and angular momentum parameters of the ring,

d̂I , m̂, via:

d̂I = VR dI , m̂ = V −1
R m, VR =

(

h+
Q6

R

)

. (3.45)

One can see from these expressions that the horizon volume element has a finite limit

for Σ → 0: √
gH → J

1/2
4 sin θΣ , (3.46)

and that the five-dimensional horizon area is given by

AH = (4πQ6)(4π)J
1/2
4 . (3.47)

To compare this area to that of the BPS black ring in Taub-NUT, it is easiest to choose

moduli so that the five-dimensional Newton’s constant is given by G5 = π
4 and the three tori

have equal volume. When Q6 = 1 one can compare the singular parts of the harmonic func-

tions to those of [5], and observe that the integer M2, M5 and KK momentum charges are:

nI = −dIVR
2

= − d̂I
2
, NI =

QI
4
, JKK = − m

8VR
= −m̂

8
. (3.48)

The entropy of the ring is then

SBR = 2π
√

J4(NI , nI , JKK) , (3.49)

which is exactly the same as for BPS black rings of identical integer charges [14].

Furthermore, one can use (3.35) and the limiting values (3.40)–(3.43) to obtain the

metric induced on the horizon:

ds2H = ℓ−4/3J4(dψ+Q6dφ)2+ℓ2/3

[

dθ2
Σ + sin2 θΣ

(

dφ− Q6

R2V 2
R

(dψ +Q6dφ)

)2
]

, (3.50)

where

ℓ =
CIJK

6
d̂I d̂J d̂K . (3.51)

The factor of Q6

R2V 2

R

in (3.50) appears naively to imply that the metric induced on the horizon

has conical singularities at θΣ = 0 and θΣ = π. Nevertheless, by carefully investigating

the periodicity of ψ and φ one can show that the angle that becomes degenerate8 has

periodicity 2π and hence no such singularities exist.

3.4 Asymptotic charges

To obtain the reduction to four dimensions of the eleven-dimensional metric (2.1) one must

recast the Gibbons-Hawking U(1) fibration according to:

ds2 =
I4

(Z1Z2Z3)2/3V 2

[

dψ + ~A− µV 2

I4
(dt + ~ω)

]2

+
V (Z1Z2Z3)

1/3

I
1/2
4

ds2E (3.52)

+

(

Z2Z3

Z2
1

)1/3

(dx2
1 + dx2

2) +

(

Z1Z3

Z2
2

)1/3

(dx2
3 + dx2

4) +

(

Z1Z2

Z2
3

)1/3

(dx2
5 + dx2

6) ,

8More explicitly, this angle is ψ

2Q6

− φ

2
.
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where

ds2E = −I−1/2
4 (dt+ ~ω)2 + I

1/2
4 ds23 (3.53)

is the four-dimensional Lorentzian metric. In order for this metric to have the canonical

normalization at infinity one needs that I4 → 1 at large r. This is achieved if one takes

CIJK
6

h lI lJ lK −m2
0 = 1 . (3.54)

One could also impose that the ψ coordinate be canonically normalized (i.e. that gψψ → 1

asymptotically) and this requires that

CIJK
6

h3 lI lJ lK = 1 . (3.55)

One can also see that, if m0 6= 0, µ does not vanish at infinity, producing a non-vanishing

gtψ . This means that one is in a rotating frame at infinity, which can be undone by a

re-definition of the coordinate ψ, as

ψ̃ = ψ + hm0 t . (3.56)

In terms of ψ̃ the metric is explicitly asymptotically flat and it is straightforward to compute

the associated asymptotic charges. The M2 charges are:

Q̂I = QI +
Q6

R2

CIJK
2

dJdK , (3.57)

while the KK-monopole charge is simply given by Q6 and the M5 charges by dI . The mass

is given by the BPS-like formula:

M =
CIJK

6

lI lJ lK
4

Q6 +
h

4

CIJK
2

Q̂I lJ lK − m0 h

2
lIdI . (3.58)

Note that here Q6 and Q̂I denote the absolute values of the charges.

The momentum along the KK direction ψ̃ is:

P = h2

(

CIJK
6

h lI lJ lK +m2
0

)

lIdI −m0 h
2 CIJK

2
Q̂I lJ lK −m3

0Q6 , (3.59)

and the angular momentum in the non-compact R
3 is:

J = R

(

m− h
lIdI
2

)

+
Q6

2R
dIQI +

Q2
6

R3

CIJK
6

dIdJdK

=
Q6

2
lIdI +

Q6

2R
dIQI +

Q6

2R2

(

h+
2Q6

R

)

CIJK
6

dIdJdK . (3.60)

If m0 = 0 and the lI and h are equal to 1, the mass formula takes a more familiar

form, as a sum of absolute values of charges:

M =
Q6

4
+

1

4

∑

I

Q̂I , (3.61)
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and the KK momentum along the GH fiber is just the sum of the dipole charges (much

like for BPS black rings):

P =
∑

I

dI =
∑

I

d̂I
1 +Q6/R

. (3.62)

Moreover, the four-dimensional angular momentum becomes

J =
Q6P

2
+
Q6

2R
dIQI +

Q6

2R2

(

1 +
2Q6

R

)

CIJK
6

dIdJdK , (3.63)

where now we can identify the first piece as coming from the Poynting vector caused by

the KK electric and magnetic charges and the other pieces as coming from the interactions

between the electric M2 charges and the magnetic M5 charges. When the black ring

becomes a supertube (d1 = d2 = Q3 = 0), the latter interactions are zero, and the KK

Poynting term Q6P
2 is the only one that survives.

4 Almost BPS supertubes

4.1 The supertube solution

From a supergravity perspective, a supertube [31] can be thought of as a particular black

ring with only two charges and one dipole charge. One can thus trivially obtain an “almost

BPS” supertube from the non-BPS solution above taking the following harmonic functions

K1 = K2 = 0 , K3 =
d3

Σ
V = 1 +

Q6

r
(4.1)

L1 = 1 +
Q1

Σ
, L2 = 1 +

Q2

Σ
, L3 = 1 , (4.2)

M = m0 +
m

Σ
+
m̃

r
. (4.3)

The solution simplifies considerably, and one finds

a1 = a2 = 0 , a3 = K3(dψ + ~A) + ~a3 , ∗3d~a3 = V dK3 −K3dV

⇒ ~a3 = d3
r cos θ −R

Σ
dφ+Q6d3

r −R cos θ

RΣ
dφ ,

ZI = LI

µ =
M

V
+

1

2
K3 , ∗3d~ω = −dM +

1

2
(V dK3 −K3dV )

⇒ ~ω =

(

−m+
d3

2

)

r cos θ −R

Σ
dφ− m̃ cos θ dφ+

Q6d3

2

r −R cos θ

RΣ
dφ . (4.4)

The supertube is smooth in a duality frame in which the electric (M2) charges corre-

spond to D1 and D5 branes and the magnetic (M5) dipole moment corresponds to a KK-

monopole wrapped around the Taub-NUT direction. In this frame, the ten-dimensional

string metric is:

ds2 = − 1√
Z1Z2Z3

(dt+ k)2 +
Z3√
Z1Z2

(

dy + a3 −
dt+ k

Z3

)2

+
√

Z1Z2ds
2
4 +

√

Z2

Z1

4
∑

a=1

dx2
a ,

(4.5)
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where y the common D1-D5 direction. Standard BPS supertubes are regular in this frame

and so we now consider the regularity of the metric of the “almost BPS” supertubes. The

coefficient of dψ2 in the metric is:

gψψ =
1√
Z1Z2

(Z3a
2
3,ψ − 2µa3,ψ + Z1Z2V

−1)

=
1

V
√
L1L2

(L1L2 − 2MK3) , (4.6)

where in the second line we have used the expressions for ZI , a3 and µ given in (4.4). The

requirement that gψψ be finite for Σ → 0 implies

m =
Q1Q2

2d3
. (4.7)

In order for ~ω not to have any Dirac-Misner string pathologies around the point Σ = 0 it is

necessary that ~ω vanish for θ = 0 and r greater or smaller than R. These conditions imply:

m =
VRd3

2
with VR = 1 +

Q6

R
. (4.8)

Combining these two relations for m one obtains an equation that determines the

supertube location R:

VR =
Q1Q2

d2
3

. (4.9)

Finally one should look at regularity at the Taub-NUT center r = 0. As the coordinate ψ

degenerates at r = 0, µ must vanish to prevent CTC’s, which implies

m̃ = −d3Q6

2R
. (4.10)

4.2 Comparing BPS and “almost BPS” supertubes

Having found a smooth supertube metric that solves the “almost BPS” equations (2.7)–

(2.9), we can compare it to that of a BPS supertube, and show that despite their rather

different appearance, the two solutions are identical.

Denoting with a “hat” the quantities associated with the BPS solution, we recall that

the BPS supertube solution is given by:

â3 =
K̂3

V
(dψ + ~A) + ~̂a3 , ∗3d~̂a3 = −dK̂3 , ẐI = L̂I ,

k̂ =

(

M̂ +
K̂3

2V

)

(dψ + ~Adφ) + ~̂ω , ∗3d~̂ω = V dM̂ − M̂dV − 1

2
dK̂3 . (4.11)

Since the supertube solution has Z3 = 1, one can absorb the term −dt/Z3 in equa-

tion (4.5) by the coordinate shift y → y + t. Thus the dipole potential a3 only enters in

the metric via the combination (dy + a3 − k)2. Comparing the BPS expressions (4.11) to

the “almost BPS” ones (4.4), one sees that, under the identifications

K̂3 = 2M , M̂ =
K3

2
, L̂I = LI (4.12)
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one has

â3 − k̂ = −(a3 − k) , ẐI = ZI , k̂ = k . (4.13)

Hence, the BPS and “almost BPS” supertube solutions can be related to each other by

flipping the sign of y and interchanging harmonic functions.

5 General extremal non-BPS rotating black holes

In this section we present the other main result of this paper: a rotating five-charge extremal

non-BPS black hole in four dimensions. This black hole can serve as the seed solution for

the most generic under-rotating non-BPS extremal black hole in the STU model and in

N = 8 supergravity in four dimensions, and can be thought of as coming from the non-BPS

extension of the five-dimensional BPS rotating (BMPV) black hole to an asymptotically

Taub-NUT solution.9

We first construct and analyze this black hole, and then show that for special values

of the charges it reduces to the under-rotating D0-D6 extremal black hole [19].

5.1 The solution

The harmonic functions associated with the KK-monopole and electric (M2) charges have

the usual form

V = h+
Q6

r
, LI = 1 +

QI
r
, (5.1)

where for simplicity we have set to one the constants lI in the LI harmonic functions. The

solution with arbitrary moduli is presented in section 6.

The dipole charges vanish, and hence KI = 0. The harmonic function, M , which

encodes the angular momentum of the solution is taken to have the form:

M = m0 +
m

r
+ α

cos θ

r2
. (5.2)

The term proportional to α is the harmonic potential is sourced by a dipole at the origin

of Taub-NUT space and, as we will see, is needed to generate the angular momentum of

the black hole.

With this choice of harmonic functions, the “almost BPS” equations (2.7), (2.9) are

solved by10

ΘI = 0 , ZI = LI , µ =
M

V
=
m0

V
+
m

V r
+α

cos θ

V r2
, ~ω = −m cos θdφ+α

sin2 θ

r
dφ . (5.3)

Absence of Dirac-Misner strings requires that ~ω vanish both at θ = 0 and θ = π, and

hence we must take

m = 0 . (5.4)

9For a recent discussion of the BPS extension of this black hole to Taub-NUT see [32].
10The vector potential ~ω dual to the dipole field cos θ

r2
follows from the identity

∗3 d

„

sin2 θ

r
dφ

«

= −d

„

cos θ

r2

«

.
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Nevertheless, α remains as a free parameter of the solution and it encodes the angular

momentum. To see this more explicitly we compute the conserved charges. As shown in

section 3.4, the four-dimensional Lorentzian metric is:

ds2E = −I−1/2
4 (dt+ ~ω)2 + I

1/2
4 ds23 , I4 = Z1Z2Z3V − µ2V 2 , (5.5)

and the electric component of the KK gauge field coming from the reduction along the

Taub-NUT fiber is

AKK = −µV
2

I4
. (5.6)

The normalization condition I4 → 1 for large r requires

h−m2
0 = 1 . (5.7)

The KK momentum along ψ, found from the asymptotic expansion of AKK, is

P = m0(h
2(Q1 +Q2 +Q3) +m2

0Q6) , (5.8)

and the R
3 angular momentum, encoded in ~ω, is

J = α . (5.9)

One can also show that this solution has a regular horizon of finite area. In the near-

horizon (r → 0) limit, one has

I4 → Q1Q2Q3Q6 − α2 cos2 θ

r4
, ωφ → α

sin2 θ

r
, (5.10)

and thus the volume element of the metric induced on the horizon is

√
gH = r(I4r

2 sin2 θ − ω2
φ)

1/2 ≈ sin θ(Q1Q2Q3Q6 − α2)1/2 . (5.11)

The horizon area is

AH = (4πQ6)(4π)
√

Q1Q2Q3Q6 − α2 , (5.12)

which coincides with the area of the BMPV black hole supersymmetrically embedded in

Taub-NUT.

5.2 The extremal rotating D0-D6 black hole

We now discuss the relationship between the solution presented above to the one of Rasheed

and Larsen [19]. First of all, the solution of Rasheed and Larsen can be compared to ours

only in the “slowly rotating” or “ergo-free” extremal limit: a→ 0, m→ 0, keeping a/m = J

fixed. In this limit the metric of [19] can be recast in a form similar to the one of (5.5):

ds2 = − r2√
H1H2

(dt+ B)2 +

√
H1H2

r2
ds23, (5.13)
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where

B =
(pq)3/2

2(p + q)
J

sin2 θ

r
dφ, (5.14)

H1 = r2 + rp+
p2q

2(p + q)
− p2q

2(p+ q)
J cos θ, (5.15)

H2 = r2 + rq +
q2p

2(p + q)
+

q2p

2(p + q)
J cos θ. (5.16)

This solution has a single scalar field running

z = i

√

H2

H1
(5.17)

and a vanishing axion. The physical D0 and D6 charges Q and P are related to p and q by

Q2 =
q3

4(p+ q)
, P 2 =

p3

4(p + q)
. (5.18)

This solution is related, by a U-duality transformation, to the solution presented above.

We will establish this by applying an appropriate transformation to the scalar field (5.17)

and showing that the resulting fields and charges fall in a special subset of those presented

above. Since we are starting from a special configuration with only two charges turned on

and no axion, we do not expect to be able to generate the most general solution, but we

will obviously obtain some constraints on the allowed values for the moduli at infinity.

In order to simplify computations, we consider the N = 2 truncation of the M-theory

description used earlier. Hence we will look at compactifications on T 6/(Z2 × Z2) × S1,

where the last S1 is parametrized by ψ and the orbifold action is the trivial one preserving

the 2-forms dx1 ∧ dx2, dx3 ∧ dx4 and dx5 ∧ dx6. The resulting N = 2 effective theory is

described by an STU model, with scalar fields in the vector multiplets parametrizing:

[

SU(1, 1)

U(1)

]3

≃ SU(1, 1)

U(1)
× SO(2, 2)

SO(2) × SO(2)
. (5.19)

The three complex moduli for our solution are given by

tI =
4M

V ZI
+ 4i e−φBI , (5.20)

where

BI =
(1
2CIJKZJZK)1/3

Z
2/3
I

, (5.21)

and the dilaton is

e−2φ =
I4

(Z1Z2Z3)2/3V 2
. (5.22)

The duality action on the three scalar fields then acts as follows:

tI →
aItI + bI
cItI + dI

(no sum) (5.23)
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where

MI =

(

aI bI
cI dI

)

, (5.24)

are SL(2,R) matrices.

Without rotation one can immediately check that our solution reduces to

tI =
4

V ZI
(m0 + i e−2U ), (5.25)

with e−2U =
√
I4, which is the one presented in Equation (4.34) of [15]. This is easily

dualized to the generating solution by [16] by taking

MI =

(

0 1

−1 0

)

(5.26)

which yields

tI =
1

2CIJKZJZK
(m0 − i e−2U ). (5.27)

At this point one can further dualize to D0-D6 charges by following the duality rotations

described in [16]. The complete duality transformation mapping the D6-D2-D2-D2 system

into the D0-D6 is then given by

MI = − 1√
2λρI

(

−ρI 1

−ρIλ −λ

)

, (5.28)

where

λ =

(

P

Q

)1/3

, ρI =

√

p0qI
1
2CIJKqJqK

, (5.29)

with 16p0 = Q6, qI = QI and (PQ)2 = 4p0q1q2q3.

Following the inverse route, we can start from (5.13)–(5.17) and apply the inverse

transformation:

MI = − 1√
2λρI

(

−λ −1

ρIλ −ρI

)

. (5.30)

The four-dimensional dilaton can be identified to the diagonal scalar t1 = t2 = t3 = z.

After applying the duality transformation we obtain

tI = − 1

ρI

λz + 1

λz − 1
(5.31)

which we expect to match the moduli of our metric (5.20), which become11

tI =
4

V ZI

(

µV + i
√

I4

)

. (5.32)

11As in [16], we use conventions in which |tI | = 1

ρI

at infinity.
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Using the explicit expression for z given in (5.17) we can see that one needs to identify

V ZI =
2ρI
λ

H1 + λ2H2

r2
(5.33)

and

V µ =
1

2λ

H1 − λ2H2

r2
. (5.34)

This can be achieved for

λ =

√

p

q
, ρI =

p+ q

2(pq)3/2
Q6qI , (5.35)

which is equivalent to (5.29) and

h =
p+ q

pq
Q6, lI =

p+ q

pq
qI , m0 =

q − p

2
√
pq
, α = − (pq)3/2

2(p + q)
J, (5.36)

where the lI are the constants in the harmonic functions LI , which, for simplicity, we have

set to one in equation (5.1), but which we will explicitly include in the next section (see

equation (6.1)) when discussing the general black-hole-black-ring solution.

Hence for special values of the charges and of the moduli, our solution can be dualized

to the under-rotating extremal limit of the D0-D6 Rasheed-Larsen black hole. However,

our solution has generic charges and moduli and hence it is more general; its duality orbit

includes all the under-rotating extremal black hole solutions of the STU model or of N = 8

supergravity in four dimensions.

6 Non-BPS black ring in a black-hole background

Making use of the linear structure underlying the equations (2.7)–(2.9), it is possible to

superimpose the solutions constructed in the previous sections to generate the metric de-

scribing a non-BPS black ring with a rotating black hole at the origin of Taub-NUT space.

Starting from the black ring solution of section 3, adding the rotating black hole corre-

sponds to adding a 1/r term to the harmonic functions LI , which therefore becomes

LI = lI +
QI
Σ

+
Q̃I
r
, (6.1)

and a “dipole” source centered at r = 0 to the harmonic function M :

M = m0 +
m

Σ
+
m̃

r
+ α̃

cos θΣ
Σ2

+ β
cos θ

r2
. (6.2)

The dipole potentials aI are left untouched, and are still given by the expressions in (3.4).

The warp factors ZI are obtained by replacing the old functions LI with the new ones

given in (6.1):

ZI = lI +
QI
Σ

+
Q̃I
r

+
CIJK

2

dJdK
Σ2

(

h+
Q6r

R2

)

. (6.3)
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The new 1/r term in ZI adds the contribution
(

h+
Q̃6

r

)

Q̃I
r
d

(

dI
Σ

)

(6.4)

to the r.h.s. of the equation for k (3.12). Hence k receives two new contributions. The first

one is given by the solution of

d(V µ7) + ∗3d~ω7 = h
Q̃I
r
d

(

dI
Σ

)

. (6.5)

This equation is easily solved by

µ7 =
h Q̃IdI
2V rΣ

, ~ω7 =
h Q̃IdI

2

r −R cos θ

RΣ
dφ . (6.6)

The other new term in k is found by solving

d(V µ8) + ∗3d~ω8 =
Q6 Q̃I
r2

d

(

dI
Σ

)

. (6.7)

Again one can find the solution by using the corresponding solution for a flat base. The

result is

µ8 =
Q6 Q̃IdI
RV rΣ

cos θ , ~ω8 =
Q6 Q̃IdI
RΣ

sin2 θ dφ . (6.8)

Furthermore the term proportional to β in M generates an extra contribution given by

µ9 = β
cos θ

V r2
, ~ω9 = β

sin2 θ

r
dφ . (6.9)

Adding the new terms to the previous black ring result, one finds the full solution for k:

µ =
m0

V
+

m

V Σ
+

m̃

V r
+ β

cos θ

V r2
+
lIdI

2Σ
+
hQIdI

2V Σ2
+Q6QIdI

cos θ

2RV Σ2
+
h Q̃IdI

2V rΣ
+
Q6 Q̃IdI

RV rΣ

+
CIJK

6
dIdJdK

[(

h2 +
Q2

6

R2

)(

r cos θ

R V Σ3
+ α

r cos θ −R

RV Σ3

)

+Q6h
3r2 +R2

2R2V rΣ3

]

,

~ω =

{

κ−m
r cos θ −R

Σ
− m̃ cos θ + β

sin2 θ

r
dφ+

hlIdI

2

r cos θ −R

Σ
+
Q6lIdI

2

r −R cos θ

RΣ

+Q6QIdI

r sin2 θ

2RΣ2
+
h Q̃IdI

2

r −R cos θ

RΣ
+
Q6 Q̃IdI

RΣ
sin2 θ

+
CIJK

6
dIdJdK

[(

h2 +
Q2

6

R2

)

(1 + α)
r2 sin2 θ

RΣ3
+Q6h

r(3R2 + r2) −R(3r2 +R2) cos θ

2R3 Σ3

]}

dφ .

(6.10)

The absence of Dirac-Misner strings requires that ~ω vanishes on the z axis. This

imposes the following constraints, which are the generalization of (3.34)

m =

(

h+
Q6

R

)

lIdI
2

+
CIJK

6

Q6hdIdJdK
2R3

+
h

2R
Q̃IdI

m̃ = κ = −Q6

(

lIdI
2R

+
CIJK

6

hdIdJdK
2R3

)

− h

2R
Q̃IdI . (6.11)
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The first equation can again be thought of as the generalization of the bubble equations [6,

28–30] to the most generic two-center non-BPS extremal solution.

The topology of the black ring horizon at Σ = 0 is not affected by the black hole. As

above, if α is chosen as in (3.39), this solution has horizon of finite area at Σ = 0 with an

S2 × S1 geometry. The area of this horizon is:

AH = 16π2Q6 J̃
1/2
4 , (6.12)

where

J̃
1/2
4 =

1

2

∑

I<J

d̂I d̂J QIQJ − 1

4

∑

I

d̂2
I Q

2
I −

CIJK
6

d̂I d̂J d̂K

(

2m̂ +
Q6

R2 V 2
R

Q̃I d̂I

)

. (6.13)

As for BPS black rings in black-hole backgrounds [33], the integer D0 charge of the

ring is no longer proportional to m̂ but rather to the combination that appears in equa-

tion (6.13):

m̂ +
Q6

2R2 V 2
R

Q̃I d̂I . (6.14)

The black hole at the center of the Taub-NUT space has five-dimensional horizon area

equal to:

ABH = (4πQ6)(4π)

√

Q6
CIJK

6
Q̃IQ̃JQ̃K − β2 . (6.15)

This black hole carries electric D6 and D2 charges (Q6 and Q̃I), and angular momentum β.

7 Conclusions and future directions

We have explicitly constructed three-charge three-dipole charge extremal non-BPS black

rings in Taub-NUT, both in the absence and in the presence of a three-charge black hole.

These rings are locally identical to the supersymmetric black rings, but break supersym-

metry because the D6 brane that can be thought of as sourcing the Taub-NUT space has

a reversed orientation compared to the BPS embedding. Our solutions become identical

to the BPS rings both in the limit when Taub-NUT becomes R
4 and in the limit when it

becomes R
3 × S1, where the orientation of the D6 brane becomes irrelevant.

We have also constructed the solution for the non-BPS embedding of a two-charge

supertube, and have shown that this solution is the same as that of a BPS supertube,

despite the rather different form of the ingredients that enter in its construction. This

agrees with the intuition that supersymmetry is broken by the incompatible supersymmetry

constraints imposed by multiple branes. When only two D2 charges are present flipping

the charge of the D6 brane creates no such incompatibility: There are still consistent

supersymmetries with all three branes.

We have also found an extremal rotating non-BPS five-charge (D6-D2-D2-D2-D0) black

hole in four dimensions. This solution is the seed for the most general extremal (un-

der)rotating non-BPS black hole solution of the STU model or of N = 8 supergravity in

four dimensions. For particular values of the charges and moduli we have shown that this
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solution can be dualized to the Kaluza Klein rotating black hole solution of Rasheed and

Larsen [19] or its U-duals [20].

Using our solution-generating method we have also constructed a solution that contains

both a rotating black hole and a black ring. This solution descends in four dimensions to

a two-black-hole non-BPS bound state, where one of the black holes has five charges (D6-

D2-D2-D2-D0) and the other has seven charges (D4-D4-D4-D2-D2-D2-D0).12 The bubble

equations that determine the distance between the two black holes are cubic in this distance,

and hence are more complicated than those governing BPS multi-center solutions [6, 28–30].

This two-center solution appears to be the most general one can construct within the

framework of [7]. Furthermore, the charges of its centers can be dualized to those of more

generic extremal non-BPS two-black-hole configurations. It would be interesting to further

investigate how generic these charges are, and whether our solution lies in the duality orbit

of the most generic two-center extremal solution.

As we discussed in the Introduction, our work bridges the gap between two rather

disconnected bodies of research — the construction of extremal supergravity solutions

using fake superpotentials [15, 16, 21, 22, 24] and the embedding of five-dimensional black

holes and black rings in Taub-NUT [25–27]. It would be interesting to see whether the fake

superpotential approach can be extended to describe multi-center solutions, and whether

the two-center solution we obtain is the most general one can find within this framework. It

would be equally interesting to see if the construction in [27] can be extended to electrically

and magnetically-charged black rings in Taub-NUT, and whether the extremal limit of these

rings can be compared to the extremal non-BPS rings we construct.

Another very important extension of this work would be to encompass families of multi-

center solutions. The method we have outlined here allows one to recycle a considerable

part of the known BPS multi-center solutions in R
4 and in R

3 × S1. Indeed, just by

writing these solutions as non-BPS solutions one can read off the warp factors, as well as

all the angular momentum terms that are not cubic in the dipole charges. Nevertheless,

the terms cubic in the dipole charges (that satisfy an equation similar to (3.17)) appear to

be somewhat harder to obtain.

Last, but not least, it would be interesting to use the ansatz of [7] to extend the

construction of BPS smooth multi-center bubbling solutions [28–30] to non-BPS smooth

extremal solutions, which would correspond to microstates of extremal non-BPS black

holes. It would be particularly interesting if non-BPS solutions exhibited scaling behavior.
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